tentukanletak kuadran masing- masing ! ftempat posisi tempat terhadap rumah (-4,5) kuadran koordinat keterangan orang (5,4) 9 satuan ke kanan dan 1 bertopi 1 satuan ke bawah orang (-4,-2) 7 satuan ke bawah dan 3 berambut 0 satuan ke atas kuning doraemon (3,-3) 7 satuan ke kanan dan 4 8 satuan ke bawah fβ€’ buat 10 kelompok dan kerjakan
6 C. –97 D. –66.Tujuh satuan ke kiri dari -2 = –2 – 7 = –97.Sepuluh satuan di bawah 4= 4 – 10= –6 Jawab6. A7. DPenjelasan dengan langkah-langkahNomor 6Jika bergeser ke kiri nilainya semakin kecil, sehingga bisa langsung dikurangi-2 - 7 = -9 ANomor 7Jika bergeser ke bawah nilainya semakin kecil sehingga bisa langsung dikurangi4 - 10 = - 6 DSemoga membantu ^_^SemangatBelajarMathLover Jikabelum dan tidak ada, Anda bisa pilih Custom Margin. 5. Isikan margin 4 4 3 3 dalam satuan cm Cara mengatur margin yang selanjutnya adalah mengisi margin 4433 dalam satuan cm. Hal ini akan tampak di beberapa kolom, ada kolom top, left, bottom, right. Semuanya bisa diisikan 4 cm, 4 cm, 3 cm dan 3 cm. 6.
Oleh Supriaten, Guru SMPN 5 Tanah Grogot, Paser, Kalimantan Timur - Menurut Kamus Besar Bahasa Indonesia KBBI, transformasi merujuk pada perubahan rupa, baik itu dari bentuk, sifat, ataupun fungsi. Jika diamati transformasi terdiri dari dua kata, yaitu trans yang memiliki arti perpindahan atau pergeseran dan formasi yang memiliki arti bentuk. Sehingga transformasi dapat diartikan sebagai perpindahan atau pergeseran bentuk. Setiap orang tentu memiliki berbagai macam aktivitas yang berbeda-beda di dalam kegiatannya sehari-hari. Mulai dari anak-anak hingga orang dewasa, aktivitas yang dilakukan sangat beragam dan dapat dilakukan baik di rumah maupun di luar rumah dalam bentuk pekerjaan, sekolah, bermain, olahraga, dan lainnya. Berbagai aktivitas yang dilakukan tersebut merupakan penggunaan dari materi trasformasi. Transformasi itu sendiri terdiri atas empat jenis, yaitu translasi, refleksi, rotasi, dan dilatasi. Baca juga Pembuktian Rumus Belah Ketupat dengan Persegi Panjang Namun, materi yang akan dipelajari dan dipahami kali ini adalah translasi. Bagaimana penggunaan traslasi dalam kehidupan sehari-hari? Mengapa translasi memiliki hubungan yang sangat erat di dalam kehidupan sehari-hari? Apakah aktivitas kegiatan yang dilakukan tidak terlepas dengan translasi?. Penggunaan translasi dalam kehidupan sehari-hari Penggunaan translasi dapat dilihat dalam kehidupan sehari-hari, seperti Bermain catur Saat bermain catur tentu strategi sangat diperlukan untuk memenangkan sebuah pertandingan. Strategi yang dilakukan dengan cara memindahkan atau menggeser bidak di tempat yang tepat, agar mampu menyingkirkan bidak lawan. Perpindahan atau pergeseran seluruh bagian bidak merupakan contoh dari translasi. Bermain mobil-mobilan Seorang anak kecil bermain mobil-mobilan, maka seluruh bagian mobil akan bergerak sesuai dengan arah dorongan atau tarikan yang dilakukan anak. Perpindahan atau pergeseran seluruh bagian mobil merupakan contoh dari translasi. Baca juga Rumus Mencari Nilai Tertinggi dan Terendah pada Microsoft Excel Bermain perosotan Di sekolah taman kanak-kanak selalu ada permainan perosotan dan ini merupakan salah satu permainan favorit dan sangat digemari anak-anak. Permainan ini dimulai dari posisi tubuh di titik tertinggi dan meluncurkan diri ke titik terendah. Perpindahan atau pergeseran seluruh tubuh anak dari titik tertinggi ke titik terendah merupakan translasi. Rumus, contoh kontekstual, dan penyelesaian translasi Rumus umum dari translasi sebagai berikut Px, y a b β†’ P'x+a, y+b Keterangan x’ , y’ = titik bayangana , b = vektor translasix , y = titik asal Baca juga Rumus Keseimbangan Konsumen Contoh soal kontekstual Contoh 1 Ayah berencana memindahkan posisi meja kerjanya ke ruang belakang. Diilustrasikan pada gambar di bawah ini. Dok. Supriaten Translasi Agar lebih memahami materi translasi, amati gambar grafik bidang koordinat kartesius di atas. Kemudian, isi tabel di bawah ini Dok. Supriaten Tabel Translasi Contoh 2Adik bermain sepeda roda tiga dengan mengayuh sejauh 8 satuan ke kanan dan 5 satuan ke kiri. Jika ketiga roda ditempatkan dalam bidang koordinat kartesius masing-masing pada titik r1 2,1, r2 2,3, dan r3 5,2, maka... Apakah ke tiga roda sepeda akan bergeser dengan jarak yang sama? Tentukan koordinat yang baru dari ketiga roda setelah ditranslasikan! Penyelesaian Iya, ketiga roda akan bergerak dengan jarak yang sama. Jika ketiga roda dalam bidang koordinat ditempatkan pada titik r maka Dok. Supriaten Jawaban Soal Translasi Baca juga Rumus Senyawa Dinitrogen Pentaoksida, Aplikasi, dan Bahaya Contoh 3 Setiap hari ayah harus membuka toko kelontong di pasar pagi. Ayah harus berjalan ke arah timur sejauh 3 satuan dan ke arah utara sejauh 2 satuan. Jika rumah ayah dalam bidang kartesius terletak pada titik A 2,3, dapatkah kamu menggambarkan letak kedudukan toko kelontongan ayah pada bidang koordinat kartesius? Penyelesaian Iya, saya dapat menggambar kedudukan toko kelontong ayah, perhatikan langkah berikut Dok. Supriaten Jawaban Soal Translasi Dok. Supriaten Jawaban Soal Translasi Letak kedudukan toko kelontong ayah pada bidang koordinat kartesius adalah A1 5,5. Dari contoh-contoh kegiatan yang dilakukan di atas, dapat disimpulkan bahwa translasi merupakan perpindahan atau pergeseran dari suatu titik ke titik lain dengan jarak tertentu tanpa mengubah bentuk benda. Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
Jikagrafik fungsi digeser sejauh 4 satuan ke kiri dan 2 satuan ke bawah, maka didapatkan grafik fungsi . SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah
PembahasanPembahasan Untuk menentukan hasil translasinya, kita tentukan koordinat tiap titik terlebih dahulu dari gambar, maka kita dapatkan koordinat tiap titik sebagai berikut Untuk translasinya digeser 2 satuan kekiri dan 5 satuan kebawah maka translasinya karena kekiri dan kebawah dianggap negatif, maka koordinat bayangannya adalah Kita dapatkan koordinat bayangan sebagai berikut Jika kita gambar di kartesius akan kita dapatkan hasil sebagai berikutPembahasan Untuk menentukan hasil translasinya, kita tentukan koordinat tiap titik terlebih dahulu dari gambar, maka kita dapatkan koordinat tiap titik sebagai berikut Untuk translasinya digeser 2 satuan kekiri dan 5 satuan kebawah maka translasinya karena kekiri dan kebawah dianggap negatif, maka koordinat bayangannya adalah Kita dapatkan koordinat bayangan sebagai berikut Jika kita gambar di kartesius akan kita dapatkan hasil sebagai berikut 4 melakukan pembulatan ke satuan, puluhan, ratusan, atau ribuan terdekat, 5. menentukan taksiran penjumlahan dan perkalian, 6. mengenal bilangan prima, 7. memahami faktor, faktor prima, dan faktorisasi, 8. menentukan KPK dan FPB dari 2 atau 3 bilangan, 9. melakukan operasi hitung campuran,
Berikut ini adalah ringkasan materi pelajaran kelas 9 IX SMP/MTs semester 1 Kurikulum 2013 revisi 2018 yang disertai dengan penjelasan melalui video pembelajaran daring [online] untuk materi pokok bahasan BAB 3 Transformasi. Materi matematika kelas 9 IX SMP/MTs Kurikulum 2013 edisi revisi 2018 sesuai dengan buku yang diterbitkan Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud. Untuk ringkasan materi TRANSFORMASI GEOMETRI Matematika Wajib Kelas 11 [XI] SMA/MA SMK/MAK ada pada link di bawah Isi Bab 3 dari buku matematika kelas 9 kurikulum 2013 edisi revisi 2018 adalah Bab III TRANSFORMASI Tokoh Pencerminan [Refleksi] Latihan Pencerminan [Refleksi] Pergeseran [Translasi] Latihan Pergeseran [Translasi] Rotasi Latihan Perputaran [Rotasi] Dilatasi Latihan Dilatasi Proyek 3Uji Kompetensi 3 Pencerminan [Refleksi] Kegiatan 1 Pencerninan Suatu BendaRefleksi atau pencerminan merupakan salah satu jenis transformasi yang memindahkan setiap titik pada suatu bidang [atau bangun geometri] dengan menggunakan sifat benda dan bayangannya pada cermin bayangan benda yang dibentuk oleh pencerminan di antaranya sebagai berikut. Bayangan suatu bangun yang dicerminkan memiliki bentuk dan ukuran yang sama dengan bangun aslinya. Jarak bayangan ke cermin sama dengan jarak benda aslinya ke cermin. Bayangan bangun pada cermin saling berhadapan dengan bangun aslinyaGambar di bawah ini merupakan contoh pencerminan [refleksi] dari segi empat PQRS terhadap garis Ξ± sehingga menghasilkan bayangan yaitu segi empat P’Q’R’S’.Berikut ini merupakan langkah-langkah untuk menggambar bayangan hasil refleksi segi empat PQRS terhadap garis Ξ±. Langkah 1 Gambar ruas garis yang tegak lurus terhadap garis Ξ± dari P, Q, R, dan S. Langkah 2 Tentukan titik P’, Q’, R’, dan S’ sehingga garis Ξ± tegak lurus dan membagi PP’, QQ’, RR’, dan SS’ sama panjang. Titik P’, Q’, R’, dan S’ merupakan bayangan titik P, Q, R, dan S. Langkah 3 Hubungkan titik-titik P’, Q’, R’, dan S’. Oleh karena P’, Q’, R’, dan S’ merupakan bayangan dari P, Q, R, dan S yang direfleksikan oleh garis Ξ±, maka segi empat P’Q’R’S’ merupakan bayangan segi empat Esensi Pencerminan [Refleksi]Refleksi atau pencerminan merupakan satu jenis transformasi yang memindahkan setiap titik pada suatu bidang dengan mengggunakan sifat bayangan cermin dari titiktitik yang dipindahkan. Perhatikan gambar di bawah. Gambar di samping menunjukkan contoh refleksi pencerminan bangun datar ABCDE pada garis m. Perhatikan bahwa ruas garis yang menghubungkan titik dan bayangannya tegak lurus terhadap garis m. Garis m disebut garis refleksi untuk ABCDE dan bayangannya A’B’C’D’E’. Karena E terletak pada garis refleksi, titik awal dan bayangannya berada di titik yang sama. Jarak antara A terhadap garis m sama dengan jarak A’ terhadap garis m, begitu pula untuk titik sudut yang lainnya dan bayangannya yang memiliki jarak sama terhadap garis refleksi m. Jika diketahui sebarang titik dengan koordinat [x, y] pada koordinat kartesius, maka koordinat bayangan hasil pencerminannya dapat dilihat pada Tabel berikut ini. Latihan Pencerminan [Refleksi]1. Tunjukkan apakah gambar yang berwarna biru merupakan hasil pencerminan dari gambar yang berwarna merah. Berikan Tentukan berapa banyak simetri lipat yang dimiliki gambar berikut. 3. Gambar masing-masing bangun berikut dan bayangannya terhadap refleksi yang diberikan. a. Segi empat JKLM dengan titik sudutnya di J [2, 2], K [7, 4], L [9, –2], dan M [3, –1] terhadap sumbu-y. b. Trapesium dengan titik sudutnya di D [4, 0], E [–2, 4], F [–2, –1], dan G [4, –3] terhadap titik asal. c. ABC dengan titik sudutnya di A [4, –2], B [4, 2], dan C [6, –2] terhadap garis y = x. d. OPQ dengan titik sudutnya di O [–2, 1], P [0, 3], dan Q [2, 2] terhadap garis y = – Segi empat WXYZ dengan titik sudutnya di W [2, –1], X [5, –2], Y [5, –5], dan Z [2, –4] terhadap garis y = Cerminkan segitiga DEF terhadap garis y = x. Gambar segitiga D’E’F’ dan tuliskan koordinatnya yang merupakan hasil pencerminan DEF terhadap garis y = x. 5. Huruf mana yang akan tetap sama jika dicerminkan terhadap suatu garis?6. Segi empat KLMN dengan titik sudut di K [–2, 4], L [3, 7], M [4, –8], dan N [–3, –5] direfleksikan terhadap sumbu-x kemudian direfleksikan terhadap garis y = x. Tentukan koordinat K’’L’’M’’N’’.7. Segitiga HIJ direfleksikan terhadap sumbu-x, kemudian sumbu-y, kemudian titik asal. Hasilnya refleksinya berkoordinat di H’’’[2, 3], I’’’[8, –4], dan J’’’[–6, –7]. Tentukan koordinat H, I, dan Pergeseran [Translasi]Materi Esensi Pergeseran [Translasi]Translasi merupakan salah satu jenis transformasi yang bertujuan untuk memindahkan semua titik suatu bangun dengan jarak dan arah yang sama. Translasi pada bidang Kartesius dapat dilukis jika kamu mengetahui arah dan seberapa jauh gambar bergerak secara mendatar dan atau vertikal. Untuk nilai yang sudah ditentukan a dan b yakni translasi [a b] memindah setiap titik P[x, y] dari sebuah bangun pada bidang datar ke P’[x + a, y + b]. Translasi dapat disimbolkan dengan [x, y] β†’ [x + a, y + b].Latihan Pergeseran [Translasi]1. Tentukan apakah gambar yang berwrna biru merupakan hasil pergeseran dari gambar yang berwarna merah. Berikan Gambar dan tentukan koordinat hasil translasi dari bangun datar di bawah ini. a. Translasikan segi empat merah sejauh 2 satuan ke kiri dan 5 satuan ke bawahb. Translasikan segitiga merah sejauh 3 satuan ke kanan dan 4 satuan ke Segitiga FGH ditranslasi sehingga menghasilkan bayangan PQR. Diketahui koordinat F [3, 9], G [–1, 4], P [4, 2], dan R [6, –3], tentukan koordinat H dan Q. Tentukan pula Segitiga WAN berkoordinat di W [0, 1], A [1, –2] dan N [–2, 1]. Gambarlah segitiga tersebut beserta bayangannya setelah translasi a. 1 satuan ke kiri dan 5 satuan ke atas b. [x + 2, y + 4] c. 3 satuan ke kanan dan 3 satuan ke bawah d. kemudian dicerminkan terhadap Jelaskan translasi yang menggerakkan bangun datar yang berwarna biru menjadi bangun datar yang berwarna Diketahui Segitiga OPQ berkoordinat di O [2, 5], P [–3, 4], dan Q [4, –2] ditranslasikan sehingga didapatkan koordinat bayangannya adalah O’ di [3, 1]. Tentukan pasangan bilangan translasinya dan koordinat titik P’ dan Q’.7. Seekor harimau sedang berburu rusa di dalam hutan. Berdasarkan hasil pemantauan diketahui bahwa koordinat rusa berada di titik A dan koordinat harimau berada pada titik B. Rusa tersebut kemudian bergerak menuju titik Tentukan pasangan bilangan translasi yang menggerakkan rusa dari titik A menuju titik C. b. Jika harimau menggunakan translasi yang sama dengan yang dilakukan oleh rusa, apakah harimau dapat menangkap rusa tersebut? c. Tentukan pasangan bilangan translasi yang harus dilakukan oleh harimau agar ia mendapatkan Perputaran [Rotasi]Materi Esensi Perputaran [Rotasi]Rotasi merupakan salah satu bentuk transformasi yang memutar setiap titik pada gambar sampai sudut dan arah tertentu terhadap titik yang tetap. Titik tetap ini disebut pusat rotasi. Besarnya sudut dari bayangan benda terhadap posisi awal disebut dengan sudut di bawah ini menunjukkan rotasi bangun ABCD terhadap pusat rotasi, R. Besar sudut ARA’, BRB’, CRC’, dan DRD’ sama. Sebarang titik P pada bangun ABCD memiliki bayangan P’ di A’B’C’D’ sedemikian sehingga besar ∠PRP’ konstan. Sudut ini disebut sudut rotasi ditentukan oleh arah rotasi. Jika berlawanan arah dengan arah perputaran jarum jam, maka sudut putarnya positif. Jika searah perputaran jarum jam, maka sudut putarnya negatif. Pada rotasi, bangun awal selalu kongruen dengan Perputaran [Rotasi]1. Jelaskan apakah gambar yang berwarna biru merupakan hasil rotasi dari gambar yang berwarna merah. Jika ya, dapatkan berapa besar sudut rotasi dan bagaimana arah dari rotasi tersebut. 2. Segi empat PQRS berkoordinat di P [2, –2], Q [4, –1], R [4, –3] dan S [2, –4]. Gambarlah bayangan PQRS pada rotasi 90⁰ berlawanan arah jarum jam yang berpusat di titik Salinlah WAN berikut. Kemudian rotasikan segitiga tersebut sebesar 90⁰ searah jarum jam yang berpusat di titik Gambar bayangan rotasi setiap bangun berikut dengan sudut 90⁰ jika diketahui arah dan pusat rotasi. Tentukan koordinat titik-titik bayangannya. WAN dengan W [–4, 1], A [–2, 1], dan N [–4, –3] berlawanan arah jarum jam dengan pusat rotasi di titik Gambar bayangan tranformasi untuk setiap segitiga berikut dengan mencerminkan segitiga pada garis yang diketahui. Bayangan akhir dari setiap bangun juga merupakan hasil rotasi. Tentukan koordinat bayangan dan sudut rotasi. a. TUV dengan T [4, 0], U [2, 3], dan V [1, 2] direfleksikan pada sumbu-y dilanjutkan sumbu-x. b. KLM dengan K [5, 0], L [2, 4], dan M [–2, 4] direfleksikan pada garis y = x dilanjutkan sumbu-x. c. XYZ dengan X [5, 0], Y [3, 4], dan Z [–3, 4] direfleksikan pada garis y = –x dilanjutkan garis y = Diketahui segitiga JKL seperti pada gambar di bawah Rotasikan segitiga JKL dengan sudut rotasi 90⁰ searah jarum jam dengan pusat rotasi titik asal [0, 0]. Berapakah koordinat titik sudut dari segitiga J’K’L’ yang merupakan bayangan dari segitiga JKL? b. Rotasikan segitiga JKL dengan sudut rotasi 180⁰ searah jarum jam dengan pusat rotasi titik asal [0, 0]. Berapakah koordinat titik sudut dari segitiga J’K’L’ yang merupakan bayangan dari segitiga JKL? 7. Diketahui segitiga RST dengan koordinat titik sudut di R[3 ,6], S[–5, 2] dan T[3, –3]. Gambar bayangan hasil transformasinya jika diketahui segitiga tersebut a. Dirotasi 90⁰ searah jarum jam yang berpusat di titik asal kemudian dicerminkan terhadap sumbu-y. b. Dirotasi 90⁰ berlawanan arah jarum jam yang berpusat di titik asal kemudian didilatasi dengan faktor skala 2 berpusat di titik asal. c. Dirotasi 180⁰ berlawanan arah jarum jam yang berpusat di titik asal kemudian diitranslasi [a b] setelah itu dicerminkan terhadap DilatasiMateri Esensi DilatasiDilatasi terhadap titik pusat merupakan perkalian dari koordinat tiap-tiap titik pada suatu bangun datar dengan faktor skala sebesar k. Faktor skala menentukan apakah suatu dilatasi merupakan pembesaran atau pengecilan. Secara umum dilatasi dari suatu koordinat [x, y] dengan faktor skala k akan menghasilkan koordinat [kx, ky] atau dapat ditulis [x, y] β†’ kx, ky. Ketika k > 1 maka dilatasi tersebut termasuk ke dalam pembesaran, tetapi jika 0 < k < 1 maka dilatasi tersebut termasuk ke dalam pengecilan. Untuk memperbesar atau memperkecil bangun, letak pusat dilatasi dapat di dalam, di luar, atau pada tepi bangun yang akan Dilatasi1. Tunjukkan apakah gambar yang berwarna biru merupakan hasil dilatasi dari gambar yang berwarna merah. Berikan Gambar yang berwarna biru merupakan hasil dilatasi dari gambar berwarna merah. Tentukan faktor skala dan jenis Titik sudut dari masing-masing bidang datar diberikan sebagai berikut. Gambar bidang datar yang dimaksud dan bayangannya setelah dilatasi dengan faktor skala yang diberikan masing-masing. Sebutkan jenis dilatasinya. a. A [1, 1], B [1, 4], dan C [3, 1] dengan faktor skala 4 b. G [–2, –2], H [–2, 6], dan J [2, 6] dengan faktor skala 0,25 c. Q [–3, 0], R [–3, 6], S [4, 6], dan T [4, 0] dengan faktor skala 1/34. Garis TU berkoordinat di T [4, 2] dan U [0, 5]. Setelah didilatasi, bayangan yang terbentuk memiliki koordinat di T’ [6, 3] dan U’ [12, 11]. Tentukan faktor skala yang Segitiga KLM berkoordinat di K[12, 4], L[4, 8], dan M[8, –8]. Setelah dua kali dilatasi berturut-turut yang berpusat di titik pusat dengan faktor skala yang sama, bayangan akhirnya memiliki koordinat K’’[3, 1], L’’[1, 2], dan M’’[2, –2]. Tentukan faktor skala k yang digunakan untuk dilatasi KLM menjadi K’’L’’M’’.6. Gambar sebarang persegi pada bidang koordinat [kamu bebas menentukan panjang sisi dari persegi tersebut]. Pilih faktor skala 2, 3, 4, dan 5 kemudian dilatasikan persegi yang telah gambar dengan masing-masing faktor skala tersebut. Gambar bayangan hasil dilatasi dengan masing-masing faktor skala. Hitung luas tiap-tiap persegi, baik persegi awal, maupun persegi hasil dilatasi dengan masing-masing faktor skala. a. Berapa kali lebih besar luas persegi hasil dilatasi dengan menggunakan masing-masing faktor skala jika dibandingkan dengan luas persegi awal? b. Bagaimana rumus untuk mementukan luas persegi hasil dilatasi jika diketahui panjang sisi dari persegi awal adalah r dan faktor skala k? [Dapatkan rumus tersebut tanpa harus menggambar bayangan hasil dilatasi, gunakan perbandingan pada jawaban a] c. Jika diberikan panjang sisi persegi awal 4 satuan, dan faktor skala 7. Berapa kali lebih besar luas persegi hasil dilatasi jika dibandingkan dengan luas persegi awal?7. Gunakan lampu senter dan tanganmu untuk membuat bayangan kelinci pada dinding. a. Menurutmu mana yang lebih besar, apakah tanganmu yang asli atau bayangan tanganmu yang membentuk gambar kelinci?b. Jika dihubungkan dengan dilatasi, merepresentasikan apakah lampu senter yang digunakan pada percobaan tersebut? c. Berdasarkan hasil perhitungan diketahui bahwa panjang hari tangan 7 cm, sedangkan panjang bayangannya di dinding 14 cm. Berapakah faktor skalanya? d. Jika tanganmu digerakkan mendekati lampu senter, menurutmu apa yang akan terjadi pada bayangannya di dinding? Apa hubungannya dengan faktor skala?8. Diketahui segitiga ABC dengan koordinat titik sudut di A [6, 12], B [–9, 3] dan C [6, –6]. Gambar bayangan hasil transformasinya jika diketahui segitiga tersebut a. Didilatasi dengan menggunakan faktor skala 1 3 dengan pusat titik asal kemudian dirotasi 90⁰ searah jarum jam yang berpusat di titik asal. b. Didilatasi dengan menggunakan faktor skala 2 dengan pusat titik asal kemudian diitranslasi setelah itu dicerminkan terhadap sumbu-y[Sebagian pembahasan masih dalam proses]====Sumber Buku Siswa Matematika/ Kementerian Pendidikan dan Kebudayaan. Edisi Revisi 2018. Jakarta Kementerian Pendidikan dan Kebudayaan.
ο»ΏA Membuat data dynamic pada sheet harga satuan material. 1. Klik pada sheet analisa harga satuan material. 2. Pada toolbar, klik : Formula >> Name Manager >> New. Gambar 1. New Name (Name Manager) 3. Beri nama Data_Material dan pilih scope > Workbook.
BerandaJika titik A βˆ’ 3 , 7 ditranslasikan 3 satuan k...PertanyaanJika titik A βˆ’ 3 , 7 ditranslasikan 3 satuan ke kanan dan 5 satuan ke bawah. Maka hasil translasinya adalah …Jika titik ditranslasikan 3 satuan ke kanan dan 5 satuan ke bawah. Maka hasil translasinya adalah Jawabanjawaban yang tepat adalah yang tepat adalah satuan ke kanan dan 5 satuan ke bawah adalah . Bayangan titik A adalah Jadi, jawaban yang tepat adalah 3 satuan ke kanan dan 5 satuan ke bawah adalah . Bayangan titik A adalah Jadi, jawaban yang tepat adalah D. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!Β©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia

Secarahistoris ada banyak mil laut yang berbeda telah digunakan dan dengan demikian juga ada banyak variasi knot. Namun, kami telah mendasarkan kalkulator knot kami pada satuan mil laut internasional yang mana umum digunakan di seluruh dunia saat ini. Konversi Knots ke Meter per second Meter per second. Pengukuran kecepatan dalam SI.

1 Bergeser ke kiri 2 satuan dan ke bawah 1 satuan a T2,1 b T-2,1 c T-2,-1 2 Bergeser ke kiri 3 satuan a T-3,0 b T0,-3 c T-3,-3 3 Bergeser ke kanan 5 satuan a T0,5 b T5,0 c T-5,0 4 T2,-3; Artinya... a Ke kanan 3 satuan b Ke kanan 3 satuan, ke bawah 3 c Ke kanan 2 satuan, ke bawah3 satuan 5 T -3,-3; Artinya... a Ke kanan 3 satuan, ke kiri 3 satuan b Ke kiri 3 satuan, ke bawah 3 satuan c Ke kiri 3 satuan, ke atas 3 satuan 6 P 3,3 memiliki bayangan P'4,2. Berapa pergeserannya ? a T1,-1 b T 1,1 c T-1,-1 7 Hasil bayangan refleksi sumbu-y dari gambar di samping adalah ... a b c 8 Hasil bayangan refleksi sumbu-x dari gambar di samping a b c 9 gambar yang menunjukkan translasi a b c 10 salah satu contoh dari.... a Refleksi b Translasi c Rotasi Leaderboard This leaderboard is currently private. Click Share to make it public. This leaderboard has been disabled by the resource owner. This leaderboard is disabled as your options are different to the resource owner. Airplane is an open-ended template. It does not generate scores for a leaderboard. Log in required Options Switch template Interactives More formats will appear as you play the activity. z6io.
  • rfe9t41tl0.pages.dev/309
  • rfe9t41tl0.pages.dev/553
  • rfe9t41tl0.pages.dev/343
  • rfe9t41tl0.pages.dev/341
  • rfe9t41tl0.pages.dev/117
  • rfe9t41tl0.pages.dev/76
  • rfe9t41tl0.pages.dev/504
  • rfe9t41tl0.pages.dev/225
  • 5 satuan ke kiri dan 7 satuan ke bawah